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▪ Area:  45,227 km2

▪ Population:1.35 million
▪ Capital: Tallinn 
▪ Currency: Euro
▪ Estonia leads Europe in startups, unicorns, 

and investments per capita (5.2 startups per 
capita)

▪ NATOs Cyber Defence Centre (CCDCOE)

ESTONIA
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visitestonia.com/en

▪ Population: 440.000
▪ Historic Centre (Old Town) of Tallinn: UNESCO world 
heritage 
▪ Coast of the Baltic sea 
▪ Annually welcoming over 4.5 million foreign visitors

TALLINN
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TALLINN UNIVERSITY OF TECHNOLOGY 

▪ Established in 1918, Tallinn Technical University (TTU) 
▪ Since 2018, the Tallinn University of Technology (TalTech)
▪ More than 30 courses between Bsc. Master, and PhD
▪ More than 10.000 students from different countries 
▪ School of Engineering
▪ Department of Electrical Power Engineering and Mechatronics 



Power Electronics Group

▪ Part of TalTech – the Estonian leader in technology and innovation
▪ Was founded in 2006. Recently has 20+ researchers and annual research budget over 1.5 mi EUR
▪ Largest research center for applied power electronics in Baltic countries and active member of the 

European Center for Power Electronics (ECPE e.V.)
▪ Co-founder and active member of Estonian Centre of Excellence in Zero Energy and Resource 

Efficient Smart Buildings and Districts (ZEBE)
▪ Founder of I3DC initiative 
▪ First academic member of Current/OS foundation
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Power Electronics Group

▪ Dmitri Vinnikov, IEEE Fellow
▪ PV converters
▪ Impedance source converters 

▪ Andrii Chub, IEEE Senior Member
▪ PV converters
▪ Partial Power converters 

▪ Andrei Blinov, IEEE Senior Member
▪ Battery and EV chargers 
▪ Current-fed converters
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▪ Edivan L. Carvalho, IEEE Senior Member
▪ AC grid integration of buildings 
▪ AC-DC converters



EU GREEN DEAL – Towards 2050 NZE Pathway

▪ By 2050 the EU aims to become the world's first “climate-
neutral block” having an economy with net-zero 
greenhouse gas emissions (NZE)

▪ Electrification is considered one of the key strategies to 
reach NZE goals

▪ The share of electricity in the final energy consumption in 
2050 is targeted to be more than 50%

▪ By 2050, almost 90% of electricity generation in EU is 
expected to come from renewable sources, with wind and 
solar PV together accounting for nearly 70%

▪ Much of the NZE need will be met by shifting towards 
electric transport and electrification of heating/cooling 
demand of buildings using heat pumps

▪ In 2050, electricity will become the dominant energy 
carrier for the buildings in EU: the prognosed growth in 
demand by 2030 is 12% and 35% by 2050

Share of electricity in total final energy consumption 
in the NZE scenario (2005-2030)
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Energy efficiency of buildings: AN ISSUE 

▪ Buildings consume (and waste!!!) too much energy: 
▪ Annual energy consumption in Estonia 33...34 TWh/y
▪ Share of buildings 50% (w/o industrial buildings)
▪ EU average 40%

▪ Currently, roughly 75% of buildings in the EU are not 
energy efficient:

▪ 85–95% of today’s buildings will still be in use in 2050

▪ To boost decarbonization the EU requires all new 
buildings from 2021 to be nearly zero-energy buildings 
(nZEB)

▪ nZEB (or class A building) :
▪ fully covered by energy from renewable sources and 

without on-site carbon emissions from fossil fuels
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Labelling of buildings

▪ EC’s Energy Performance of Buildings Directive (EPBD)
▪ Labelling of energy efficiency of buildings
▪ EPBD requires all new buildings from 2021 to be nearly zero-energy

energy.ec.europa.eu



Labelling of buildings

▪ Importance of high-efficient buildings in Estonia:
▪ Intermittency is a challenge for planning.
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Nearly zero-energy buildings today

▪ In practice, NZEB consumes up to 4 times less energy than the traditional 
ones

▪ Energy efficiency is the main feature of ZEB - PV installation (backed up with 
energy storage), heat pump, heat recovery ventilation, energy-efficient 
appliances and lighting, smart control of loads

▪ nZEB: 
▪ High energy performance (low energy consumption)
▪ Local renewable generation
▪ Most of energy saving technologies are based on power electronics 



Power electronics for AC-based nZEB today

▪ AC is rectified in every appliance, reducing efficiency, reliability, and power factor

▪ Power factor is an issue

Renewable generat ion Elet ric vehicle chargers
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Power electronics for AC-based nZEB today

▪ Power Factor Correction (PFC) is required only above 75 W, and the  energy efficiency is 
further affected by a non-unity power factor

▪ Cumulative energy waste could become significant, even in installations where low-power 
devices are dominant

GU10 LED bulb (4.3 W) Laptop charger (65 W)



Power electronics for AC-based nZEB today

▪ The elephant in the room: AC generates more electronic waste



DC power distribution: the next-generation of nZEB

▪ Increased efficiency and maximized self-consumption of renewable energy due to the less energy 
conversion stages (DC can save up to 30% of energy waste)  

▪ No reactive power – only active energy is delivered

▪ Simple coordination and control, better resilience, and energy security (droop control based)
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Main initiatives towards DC

▪ Current/OS Foundation: protocols under development

▪ NPR9090: first national practice guidelines for DC (2018)



Voltage levels, according to Current/OS

▪ Voltage levels and bands are selected according to the application
▪ Industrial-scale: 640-760 Vdc
▪ Building-scale:320-380 Vdc

▪ ELVDC: 24-57 Vdc

▪ Droop control is essential to ensure compatibility between different sources and loads
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Protection zones and isolation requirements

▪ Protection zones are defined according to the voltage levels and current limitation (NPR9090)
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Protection zones and isolation requirements

▪ Protection zones are defined according to the voltage levels and current limitation (NPR9090)



Previously publication and background

E. L. Carvalho, A. Blinov, A. Chub, P. Emiliani, G. de Carne and D. Vinnikov, "Grid Integration of DC Buildings: 
Standards, Requirements and Power Converter Topologies," in IEEE Open Journal of Power Electronics

i-AFE Converters (Classes)

Non-resonant Resonant Non-resonant Resonant Bridge-based Non-resonant Quasi-res. T-Type based InterleavedT-type based Unfolder

Two-level (2L) MultilevelTwo-level (2L) Multilevel Two-level (2L) Multilevel

Two-stage Quasi single-stage Single-stage LF transformer

Two-level (2L)

Non-resonant



Grid-interface converters and fuctionalities

▪ Bidirectional power transfer 

▪ Galvanic isolation (between AC and DC parts)

▪ Power 5-10 kVA

▪ Droop control operation(voltage range defined by the standard)

▪ Anciliary services for the AC grid side

Soft -start ing
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70.6 %

(7196 kWh)

20.7 %

(2113 kWh)

8.6 %

(879 kWh) Phase-3

Phase-1

Phase-2

Problems of existing installations

Parameter Value
Location Estonia, Tallinn
Heated area 176.7 m2

Total power of PV 5 kWp 
Model of HP Thermia Atec HP 11
COP of HP COP 3.8 (+7/+45 °C)
Habitants 4

Anual energy consumption: 10187.46 kWh



Problems of existing installations

Time: [10 ms/ div]ib : [8 A/ div]

va : [250 V/ div]

vb : [250 V/ div] ia : [8 A/ div]

Time: [4 ms/ div]ib : [8 A/ div]

va : [250 V/ div]

vb : [250 V/ div] ia : [8 A/ div]

Power demand/phase



Power electronics solutions 

▪ Isolated active front-end converter (i-AFE)
▪ i-AFE based on voltage source (2L-VSC) and dual-active bridge (DAB) 

converter: ac-dc+dc-dc
▪ Power-balance capability 

▪ A flat efficiency curve is the main challenge 

▪ Efficiency up to 95.8% / 5-kW

E. L. Carvalho, A. Blinov, A. Chub, D. Vinnikov, "Design Considerations of Dual-Active Bridge DC Grid-Forming Converter for DC Buildings", in Trans. on Industrial Electronics

va : [250 V/ div] vb : [250/ div]

vc : [250 V/ div]

ia : [10 A/ div]

T ime: [10 ms/ div]

vdc-2 : [100 V/ div]

isec : [20 A/ div]

vpri : [500 V/ div]

vsec : [500 V/ div]

T ime: [2 μ s/ div]



Power electronics solutions 

▪ Single-stage i-AFE:

▪ Lower number of sensors/feedback loops

▪ No intermediate DC link

▪ Compelex modulation strategy

E. L. Carvalho, A. Blinov, A. Chub, D. Vinnikov, "Three-Phase Bidirectional Isolated AC-DC Matrix-Converter with Full Soft-Switching Range", in IEEE ACCESS

vsec:[0.5 kV/ div]

vprim :[1 kV/ div]

i lk:[5 A/ div] 

Time: [10 ms/div]

ib :[2.5 A/div]

ic  :[2.5 A/div]

ia :[2.5 A/div]



Power electronics solutions 

▪ Single-stage i-AFE:

▪ i-GIC based on matrix-converters (bidirectional switches)

▪ Full soft-switching operation 

▪ Peak efficiency 96.7 % (96.5% / 3.5 kW)

E. L. Carvalho, A. Blinov, A. Chub, D. Vinnikov, "Three-Phase Bidirectional Isolated AC-DC Matrix-Converter with Full Soft-Switching Range", in IEEE ACCESS
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MERGE – SMart EneRgy GatEway

vdc-1

Cdc-1

S1

Input  filter (LCL)
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▪ Bidirectional power router for prosumer DC buildings
▪ High-frequency galvanic isolation
▪ Input 230/400 VAC, output 350 VDC, 5…10 kW
▪ Droop control according to Current/OS protocol
▪ Efficiency curve optimized for part-load operation based 

on statistical data (>97 %)
▪ Possible multi-port configuration with USB-PD output



Design targets and priorities

• Aplication oriented design
• Investigate actual operational profile
• Indicate most probable working conditions
• Optimized design considering the droop curve

E. L. Carvalho, A. Blinov, A. Chub, D. Vinnikov, "Design Considerations of Dual-Active Bridge DC Grid-Forming Converter for DC Buildings", in Trans. on Industrial Electronics

10.0

20.0

30.0

40.0

P
ro

p
a
b

il
it

y
 (

%
)

4-5 kW3-4 kW2-3 kW1-2 kW
0.0

Power consumpt ion (kW)

< 1 kW > 5 kW

4 %

37 %

19 %
13 %

23 %

4 %

88

100

P
o
w

e
r 

p
ro

c
es

si
n

g
 e

ff
ic

ie
n

cy
 (

%
)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

84

Output  power (p.u.)

1.0 1.1

96

92

Convent ional design 

Design for dc buildings

4 % (> 5 kW)

37 % (1-2 kW)

23 % (2-3 kW)

19 % (3-4 kW)

13 % (4-5 kW)

4 % (< 1 kW)

Average energy consumption



Effect of droop control on power converter efficiency

▪ Dual active bridge vs Series resonant converter: How to optimize the efficiency curve for buildings?

▪ Similar component count
▪ Different control design constraints
▪ Possible operation at full soft-switching
▪ Flat efficiency curve

E. L. Carvalho, A. Blinov, A. Chub, D. Vinnikov, "Design Considerations of Dual-Active Bridge DC Grid-Forming Converter for DC Buildings", in Trans. on Industrial Electronics

Cin n : 1
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vsec-resvprim-res
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Design constraints Power converter topology

Time: [4 μs/ div]

vsec: [500 V/ div]vpri [500 V/ div]

iT : [20 A/ div]

vout: [50 V/ div]

Time: [4 μs/ div]

vsec: [500 V/ div]vpri [500 V/ div]

iT : [20 A/ div]

vout: [50 V/ div]DAB SRC



Effect of droop control on power converter efficiency

▪ Efective operation area 

▪ Conventional design:  designed to operate within a predefined region of output power or voltage

▪ Operation under droop control: the processed power is constrained to follow a specific line, which is 
determined by the droop control

E. L. Carvalho, A. Blinov, A. Chub, D. Vinnikov, "Design Considerations of Dual-Active Bridge DC Grid-Forming Converter for DC Buildings", in Trans. on Industrial Electronics

Phase-shift  angle (rad)

P
o
w

e
r 

tr
a
n
sf

er
e
d

 (
p

.u
.)

0 π/ 4 π/ 2 3π/ 4 π 
0.00

0.25

0.50

0.75

1.00

Operat ion area

Conversion voltage rat io (m)

P
ro

ce
ss

ed
 p

o
w

e
r 

(W
)

0.8 0.9 1.00 1.1 1.2

–   

–   

0

0.5

1.0



Phase-shift  angle (rad)

P
o
w

e
r 

tr
a
n
sf

er
e
d

 (
p

.u
.)

0 π/ 4 π/ 2 3π/ 4 π 
0.00

0.25

0.50

0.75

1.00
Act ive power (W)

Aparent  power (VA)

Effect of droop control on power converter efficiency

▪ Dual active bridge operation

▪ Wide soft-switching range vs high reactive power

E. L. Carvalho, A. Blinov, A. Chub, D. Vinnikov, "Design Considerations of Dual-Active Bridge DC Grid-Forming Converter for DC Buildings", in Trans. on Industrial Electronics
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Effect of droop control on power converter efficiency

▪ Dual active bridge operation

▪ How does droop control affect soft-switching operation?

E. L. Carvalho, A. Blinov, A. Chub, D. Vinnikov, "Design Considerations of Dual-Active Bridge DC Grid-Forming Converter for DC Buildings", in Trans. on Industrial Electronics

ZVS-on boundary / droop control line Soft-switching boundaries
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Effect of droop control on power converter efficiency

▪ Dual active bridge operation

▪ How does droop control affect soft-switching operation?

E. L. Carvalho, A. Blinov, A. Chub, D. Vinnikov, "Design Considerations of Dual-Active Bridge DC Grid-Forming Converter for DC Buildings", in Trans. on Industrial Electronics

ZVS-on boundary / droop control line Soft-switching boundaries
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Effect of droop control on power converter efficiency

▪ Dual active bridge (5-kW/100 kHz)

E. L. Carvalho, A. Blinov, A. Chub, D. Vinnikov, "Design Considerations of Dual-Active Bridge DC Grid-Forming Converter for DC Buildings", in Trans. on Industrial Electronics

▪ Series resonant converter (5-kW/100 kHz)
Design 1 Design 2

Design 1:

´

Design 2: 

Primary side switches C2M0160120D (1200 V/19 A), 160 mΩ  /47 pF 

Secondary side switches C3M0120065D (650 V/22 A), 120 mΩ  /45 pF 

 

Primary side switches UF3SC120009K4 (1200 V/65 A), 73 mΩ /210 pF 

Secondary side switches UF3SC065007K4 (650 V/120 A), 8.8 mΩ /1190 pF 
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SMART ENERGY ROUTER

▪ Multiport converter with USB PD interface, according to Current/OS protocols 
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SMART ENERGY ROUTER

▪ Multiport converter with USB PD interface, according to Current/OS protocols 

USB PD interface (48-60 Vdc)
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TALTECH Residential DC Innovation Hub

▪ First academic member of the Current/OS 
Foundation

▪ An international open platform for 
research and demonstration of residential 
DC power distribution technology

▪ Validation of net-zero-energy solutions 
(workplace, space heating and cooling, 
ventilation, etc.)

▪ The living lab blends the everyday real-life 
experiences of pilot users with academic 
research to develop future-proof, energy-
saving technologies

▪ Data collection for the future design of the 
energy-neutral TalTech campus

The first DC EXPERIENCE CENTER in Northern Europe

taltech.ee/en/i3dc-initiative



TALTECH Residential DC Innovation Hub

▪ Thermally insulated for year-round operation
▪ 350V droop-controlled microgrid (operating system 

Current/OS)
▪ Heat pump fed from DC
▪ Solar facade composed of 5 c-Si PV modules
▪ Solar roof with 3 south-facing and 3 north-facing c-Si PV 

modules
▪ LED lighting fed from DC
▪ Battery energy storage
▪ Solid-state protection (both commercial and research 

samples)
▪ DC appliances (continuous development)



TALTECH Residential DC Innovation Hub
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Live telemetry

▪ Data logging and visualization



Undergoing concepts 

▪ Novel power electronic building block for fast 
deployment of residential DC systems:

▪ Aimed at nano-producers (<800W)
▪ Universal compatibility: 

- any residential PV module and 24V or 48V 
batteries at the input

- standard 350±30V or 700±60V microgrid at 
the output
▪ Efficiency  98% for both operation modes
▪ Integrated soft-start and solid-state protection 

for compatibility with Current/OS protocols

FLEXIVERTER – FLEXIble ConVERTER

V. Sidorov, et al. "Novel Universal Power Electronic Interface for Integration of PV Modules and Battery Energy Storages in Residential DC Microgrids," in IEEE Access

PC: Andrii Chub

R: Salman Kahan



Undergoing concepts 

FLEXIVERTER – FLEXIble ConVERTER

V. Sidorov, et al. "Novel Universal Power Electronic Interface for Integration of PV Modules and Battery Energy Storages in Residential DC Microgrids," in IEEE Access

PC: Andrii Chub

R: Salman Kahan



Undergoing concepts 

▪ Ultra-efficient – over 99% for 25%+ load
▪ Optimized for 350±30V residential DC microgrids
▪ Designed for second-life LFP battery stack of 109 cells, 

approx. capacity ~8 kWh (depends on degradation)
▪ Patented control with soft-switching in the entire range
▪ Soft-start and embedded solid-state protection for 

compatibility with Current/OS DC microgrid protocol 
▪ Ready for emerging bidirectional monolithic GaN switches

(by Infineon)

FORCE – Fractional POweR ConvErter

N. Hassanpour et al. "High-Efficiency Partial Power Converter for Integration of Second-Life Battery Energy Storage Systems in DC Microgrids," in IEEE Open Journal of the Industrial Electronics Society

PC: Andrii Chub

R: Neelesh Yadav



Undergoing concepts 

FORCE – Fractional POweR ConvErter

N. Hassanpour et al. "High-Efficiency Partial Power Converter for Integration of Second-Life Battery Energy Storage Systems in DC Microgrids," in IEEE Open Journal of the Industrial Electronics Society

PC: Andrii Chub

R: Neelesh Yadav
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Undergoing concepts 

▪ Charges EV and employs energy stored in it for the 
emergency backup power supply of ZEB

▪ High-frequency galvanic isolation
▪ Power 3…7.4 kVA, universal EV-side range of 200…800 VDC
▪ Droop controlled according to Current/OS (in emergency 

bands)
▪ High weighted efficiency of >97%
▪ Low-cost single-stage design

UBICHARGER – low-power EV opportunity Charger

D. Zinchenko et al. "High-Efficiency Single-Stage On-Board Charger for Electrical Vehicles," in IEEE Transactions on Vehicular Technology

PC: Andrei Blinov

PC: Sachin Chauhan



Undergoing concepts 

UBICHARGER – low-power EV opportunity Charger

D. Zinchenko et al. "High-Efficiency Single-Stage On-Board Charger for Electrical Vehicles," in IEEE Transactions on Vehicular Technology

PC: Andrei Blinov

PC: Sachin Chauhan



Undergoing concepts 

▪ Optimized for 350 VDC/16A residential applications
▪ Utilizes SiC JFETs for low RDSon, efficiency 99.8% @ 16A
▪ Contains residual current sensor for ultimate safety
▪ Fast speed – short circuit detected within 10 µs 
▪ MQTT smart connection to Energy Management System

SAFEBREAKER – SAfe and Fast DC Electronic BREAKER
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Main challenges of DC today

▪ Lack of public awareness 
▪ Lack of international standardization and mature technology 
▪ Lack of market-ready technologies: 

▪ PV converters
▪ energy storage interfaces
▪ EV chargers
▪ energy routers, etc.

i³ DC Initiative: inform, inspire & innovate (est. 2020)

▪ organization of national and international seminars and workshops 
on residential DC nanogrids, DC buildings and districts

▪ research, development and showcasing of innovative technologies
▪ development of public policies and standards for DC buildings 
▪ creation of new cleantech ventures and joint seeking for funds
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